Abstract:Education is a right of all, however, every individual is different than others. Teachers in post-communism era discover inherent individualism to equally train all towards job market of fourth industrial revolution. We can consider scenario of ethnic minority education in academic practices. Ethnic minority group has grown in their own culture and would prefer to be taught in their native way. We have formulated such linguistic anthropology(how people learn)based engagement as semi-supervised problem. Then, we have developed an conditional deep generative adversarial network algorithm namely LA-GAN to classify linguistic ethnographic features in student engagement. Theoretical justification proves the objective, regularization and loss function of our semi-supervised adversarial model. Survey questions are prepared to reach some form of assumptions about z-generation and ethnic minority group, whose learning style, learning approach and preference are our main area of interest.
Abstract:According to the latest trend of artificial intelligence, AI-systems needs to clarify regarding general,specific decisions,services provided by it. Only consumer is satisfied, with explanation , for example, why any classification result is the outcome of any given time. This actually motivates us using explainable or human understandable AI for a behavioral mining scenario, where users engagement on digital platform is determined from context, such as emotion, activity, weather, etc. However, the output of AI-system is not always systematically correct, and often systematically correct, but apparently not-perfect and thereby creating confusions, such as, why the decision is given? What is the reason underneath? In this context, we first formulate the behavioral mining problem in deep convolutional neural network architecture. Eventually, we apply a recursive neural network due to the presence of time-series data from users physiological and environmental sensor-readings. Once the model is developed, explanations are presented with the advent of XAI models in front of users. This critical step involves extensive trial with users preference on explanations over conventional AI, judgement of credibility of explanation.
Abstract:Enterprise resource planning (ERP) software brings resources, data together to keep software-flow within business processes in a company. However, cloud computing's cheap, easy and quick management promise pushes business-owners for a transition from monolithic to a data-center/cloud based ERP. Since cloud-ERP development involves a cyclic process, namely planning, implementing, testing and upgrading, its adoption is realized as a deep recurrent neural network problem. Eventually, a classification algorithm based on long short term memory (LSTM) and TOPSIS is proposed to identify and rank, respectively, adoption features. Our theoretical model is validated over a reference model by articulating key players, services, architecture, functionalities. Qualitative survey is conducted among users by considering technology, innovation and resistance issues, to formulate hypotheses on key adoption factors.