Abstract:Deep subsurface exploration is important for mining, oil and gas industries, as well as in the assessment of geological units for the disposal of chemical or nuclear waste, or the viability of geothermal energy systems. Typically, detailed examinations of subsurface formations or units are performed on cuttings or core materials extracted during drilling campaigns, as well as on geophysical borehole data, which provide detailed information about the petrophysical properties of the rocks. Depending on the volume of rock samples and the analytical program, the laboratory analysis and diagnostics can be very time-consuming. This study investigates the potential of utilizing machine learning, specifically convolutional neural networks (CNN), to assess the lithology and mineral content solely from analysis of drill core images, aiming to support and expedite the subsurface geological exploration. The paper outlines a comprehensive methodology, encompassing data preprocessing, machine learning methods, and transfer learning techniques. The outcome reveals a remarkable 96.7% accuracy in the classification of drill core segments into distinct formation classes. Furthermore, a CNN model was trained for the evaluation of mineral content using a learning data set from multidimensional log analysis data (silicate, total clay, carbonate). When benchmarked against laboratory XRD measurements on samples from the cores, both the advanced multidimensional log analysis model and the neural network approach developed here provide equally good performance. This work demonstrates that deep learning and particularly transfer learning can support extracting petrophysical properties, including mineral content and formation classification, from drill core images, thus offering a road map for enhancing model performance and data set quality in image-based analysis of drill cores.
Abstract:The accurate calculation and uncertainty quantification of the characteristics of spent nuclear fuel (SNF) play a crucial role in ensuring the safety, efficiency, and sustainability of nuclear energy production, waste management, and nuclear safeguards. State of the art physics-based models, while reliable, are computationally intensive and time-consuming. This paper presents a surrogate modeling approach using neural networks (NN) to predict a number of SNF characteristics with reduced computational costs compared to physics-based models. An NN is trained using data generated from CASMO5 lattice calculations. The trained NN accurately predicts decay heat and nuclide concentrations of SNF, as a function of key input parameters, such as enrichment, burnup, cooling time between cycles, mean boron concentration and fuel temperature. The model is validated against physics-based decay heat simulations and measurements of different uranium oxide fuel assemblies from two different pressurized water reactors. In addition, the NN is used to perform sensitivity analysis and uncertainty quantification. The results are in very good alignment to CASMO5, while the computational costs (taking into account the costs of generating training samples) are reduced by a factor of 10 or more. Our findings demonstrate the feasibility of using NNs as surrogate models for fast characterization of SNF, providing a promising avenue for improving computational efficiency in assessing nuclear fuel behavior and associated risks.