Abstract:Recently, several techniques have been explored to detect unusual behaviour in surveillance videos. Nevertheless, few studies leverage features from pre-trained CNNs and none of then present a comparison of features generate by different models. Motivated by this gap, we compare features extracted by four state-of-the-art image classification networks as a way of describing patches from security video frames. We carry out experiments on the Ped1 and Ped2 datasets and analyze the usage of different feature normalization techniques. Our results indicate that choosing the appropriate normalization is crucial to improve the anomaly detection performance when working with CNN features. Also, in the Ped2 dataset our approach was able to obtain results comparable to the ones of several state-of-the-art methods. Lastly, as our method only considers the appearance of each frame, we believe that it can be combined with approaches that focus on motion patterns to further improve performance.
Abstract:High-accuracy speech recognition is especially challenging when large datasets are not available. It is possible to bridge this gap with careful and knowledge-driven parsing combined with the biologically inspired CNN and the learning guarantees of the Vapnik Chervonenkis (VC) theory. This work presents a Shallow-CNN-HTSVM (Hierarchical Tree Support Vector Machine classifier) architecture which uses a predefined knowledge-based set of rules with statistical machine learning techniques. Here we show that gross errors present even in state-of-the-art systems can be avoided and that an accurate acoustic model can be built in a hierarchical fashion. The CNN-HTSVM acoustic model outperforms traditional GMM-HMM models and the HTSVM structure outperforms a MLP multi-class classifier. More importantly we isolate the performance of the acoustic model and provide results on both the frame and phoneme level considering the true robustness of the model. We show that even with a small amount of data accurate and robust recognition rates can be obtained.