Abstract:This paper introduces a novel method for emulating piano sounds. We propose to exploit the sine, transient, and noise decomposition to design a differentiable spectral modeling synthesizer replicating piano notes. Three sub-modules learn these components from piano recordings and generate the corresponding harmonic, transient, and noise signals. Splitting the emulation into three independently trainable models reduces the modeling tasks' complexity. The quasi-harmonic content is produced using a differentiable sinusoidal model guided by physics-derived formulas, whose parameters are automatically estimated from audio recordings. The noise sub-module uses a learnable time-varying filter, and the transients are generated using a deep convolutional network. From singular notes, we emulate the coupling between different keys in trichords with a convolutional-based network. Results show the model matches the partial distribution of the target while predicting the energy in the higher part of the spectrum presents more challenges. The energy distribution in the spectra of the transient and noise components is accurate overall. While the model is more computationally and memory efficient, perceptual tests reveal limitations in accurately modeling the attack phase of notes. Despite this, it generally achieves perceptual accuracy in emulating single notes and trichords.
Abstract:This paper presents a method for modeling optical dynamic range compressors using deep neural networks with Selective State Space models. The proposed approach surpasses previous methods based on recurrent layers by employing a Selective State Space block to encode the input audio. It features a refined technique integrating Feature-wise Linear Modulation and Gated Linear Units to adjust the network dynamically, conditioning the compression's attack and release phases according to external parameters. The proposed architecture is well-suited for low-latency and real-time applications, crucial in live audio processing. The method has been validated on the analog optical compressors TubeTech CL 1B and Teletronix LA-2A, which possess distinct characteristics. Evaluation is performed using quantitative metrics and subjective listening tests, comparing the proposed method with other state-of-the-art models. Results show that our black-box modeling methods outperform all others, achieving accurate emulation of the compression process for both seen and unseen settings during training. We further show a correlation between this accuracy and the sampling density of the control parameters in the dataset and identify settings with fast attack and slow release as the most challenging to emulate.
Abstract:Analog electronic circuits are at the core of an important category of musical devices. The nonlinear features of their electronic components give analog musical devices a distinctive timbre and sound quality, making them highly desirable. Artificial neural networks have rapidly gained popularity for the emulation of analog audio effects circuits, particularly recurrent networks. While neural approaches have been successful in accurately modeling distortion circuits, they require architectural improvements that account for parameter conditioning and low latency response. In this article, we explore the application of recent machine learning advancements for virtual analog modeling. We compare State Space models and Linear Recurrent Units against the more common Long Short Term Memory networks. These have shown promising ability in sequence to sequence modeling tasks, showing a notable improvement in signal history encoding. Our comparative study uses these black box neural modeling techniques with a variety of audio effects. We evaluate the performance and limitations using multiple metrics aiming to assess the models' ability to accurately replicate energy envelopes, frequency contents, and transients in the audio signal. To incorporate control parameters we employ the Feature wise Linear Modulation method. Long Short Term Memory networks exhibit better accuracy in emulating distortions and equalizers, while the State Space model, followed by Long Short Term Memory networks when integrated in an encoder decoder structure, outperforms others in emulating saturation and compression. When considering long time variant characteristics, the State Space model demonstrates the greatest accuracy. The Long Short Term Memory and, in particular, Linear Recurrent Unit networks present more tendency to introduce audio artifacts.