Abstract:We studied the application of the Pseudo-Zernike features as image parameters (instead of the Hillas parameters) for the discrimination between the images produced by atmospheric electromagnetic showers caused by gamma-rays and the ones produced by atmospheric electromagnetic showers caused by hadrons in the MAGIC Experiment. We used a Support Vector Machine as classification algorithm with the computed Pseudo-Zernike features as classification parameters. We implemented on a FPGA board a kernel function of the SVM and the Pseudo-Zernike features to build a third level trigger for the gamma-hadron separation task of the MAGIC Experiment.