Abstract:Continuous blood pressure (BP) measurements can reflect a bodys response to diseases and serve as a predictor of cardiovascular and other health conditions. While current cuff-based BP measurement methods are incapable of providing continuous BP readings, invasive BP monitoring methods also tend to cause patient dissatisfaction and can potentially cause infection. In this research, we developed a method for estimating blood pressure based on the features extracted from Electrocardiogram (ECG) and Photoplethysmogram (PPG) signals and the Arterial Blood Pressure (ABP) data. The vector of features extracted from the preprocessed ECG and PPG signals is used in this approach, which include Pulse Transit Time (PTT), PPG Intensity Ratio (PIR), and Heart Rate (HR), as the input of a clustering algorithm and then developing separate regression models like Random Forest Regression, Gradient Boosting Regression, and Multilayer Perceptron Regression algorithms for each resulting cluster. We evaluated and compared the findings to create the model with the highest accuracy by applying the clustering approach and identifying the optimal number of clusters, and eventually the acceptable prediction model. The paper compares the results obtained with and without this clustering. The results show that the proposed clustering approach helps obtain more accurate estimates of Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP). Given the inconsistency, high dispersion, and multitude of trends in the datasets for different features, using the clustering approach improved the estimation accuracy by 50-60%.