Abstract:Traditional methods like Graph Convolutional Networks (GCNs) face challenges with limited data and class imbalance, leading to suboptimal performance in graph classification tasks during toxicity prediction of molecules as a whole. To address these issues, we harness the power of Graph Isomorphic Networks, Multi Headed Attention and Free Large-scale Adversarial Augmentation separately on Graphs for precisely capturing the structural data of molecules and their toxicological properties. Additionally, we incorporate Few-Shot Learning to improve the model's generalization with limited annotated samples. Extensive experiments on a diverse toxicology dataset demonstrate that our method achieves an impressive state-of-art AUC-ROC value of 0.816, surpassing the baseline GCN model by 11.4%. This highlights the significance of our proposed methodology and Few Shot Learning in advancing Toxic Molecular Classification, with the potential to enhance drug discovery and environmental risk assessment processes.
Abstract:This survey paper presents a brief overview of recent research on graph data augmentation and few-shot learning. It covers various techniques for graph data augmentation, including node and edge perturbation, graph coarsening, and graph generation, as well as the latest developments in few-shot learning, such as meta-learning and model-agnostic meta-learning. The paper explores these areas in depth and delves into further sub classifications. Rule based approaches and learning based approaches are surveyed under graph augmentation techniques. Few-Shot Learning on graphs is also studied in terms of metric learning techniques and optimization-based techniques. In all, this paper provides an extensive array of techniques that can be employed in solving graph processing problems faced in low-data scenarios.