Abstract:Recent advances in Artificial Intelligence (AI) have sparked renewed interest in its potential to improve education. However, AI is a loose umbrella term that refers to a collection of methods, capabilities, and limitations-many of which are often not explicitly articulated by researchers, education technology companies, or other AI developers. In this paper, we seek to clarify what "AI" is and the potential it holds to both advance and hamper educational opportunities that may improve the human condition. We offer a basic introduction to different methods and philosophies underpinning AI, discuss recent advances, explore applications to education, and highlight key limitations and risks. We conclude with a set of questions that educationalists may ask as they encounter AI in their research and practice. Our hope is to make often jargon-laden terms and concepts accessible, so that all are equipped to understand, interrogate, and ultimately shape the development of human centered AI in education.
Abstract:Massive Open Online Courses (MOOCs) bring together thousands of people from different geographies and demographic backgrounds -- but to date, little is known about how they learn or communicate. We introduce a new content-analysed MOOC dataset and use Bayesian Non-negative Matrix Factorization (BNMF) to extract communities of learners based on the nature of their online forum posts. We see that BNMF yields a superior probabilistic generative model for online discussions when compared to other models, and that the communities it learns are differentiated by their composite students' demographic and course performance indicators. These findings suggest that computationally efficient probabilistic generative modelling of MOOCs can reveal important insights for educational researchers and practitioners and help to develop more intelligent and responsive online learning environments.