Abstract:The COVID19 pandemic has had a detrimental impact on the health and welfare of the worlds population. An important strategy in the fight against COVID19 is the effective screening of infected patients, with one of the primary screening methods involving radiological imaging with the use of chest Xrays. This is why this study introduces a customized convolutional neural network (CCNN) for medical image classification. This study used a dataset of 6432 images named Chest Xray (COVID19 and Pneumonia), and images were preprocessed using techniques, including resizing, normalizing, and augmentation, to improve model training and performance. The proposed CCNN was compared with a convolutional neural network (CNN) and other models that used the same dataset. This research found that the Convolutional Neural Network (CCNN) achieved 95.62% validation accuracy and 0.1270 validation loss. This outperformed earlier models and studies using the same dataset. This result indicates that our models learn effectively from training data and adapt efficiently to new, unseen data. In essence, the current CCNN model achieves better medical image classification performance, which is why this CCNN model efficiently classifies medical images. Future research may extend the models application to other medical imaging datasets and develop realtime offline medical image classification websites or apps.