Abstract:Automation of High-Level Context (HLC) reasoning for intelligent systems at scale is imperative due to the unceasing accumulation of contextual data in the IoT era, the trend of the fusion of data from multi-sources, and the intrinsic complexity and dynamism of the context-based decision-making process. To mitigate this issue, we propose an automatic context reasoning framework CSM-H-R, which programmatically combines ontologies and states at runtime and the model-storage phase for attaining the ability to recognize meaningful HLC, and the resulting data representation can be applied to different reasoning techniques. Case studies are developed based on an intelligent elevator system in a smart campus setting. An implementation of the framework - a CSM Engine, and the experiments of translating the HLC reasoning into vector and matrix computing especially take care of the dynamic aspects of context and present the potentiality of using advanced mathematical and probabilistic models to achieve the next level of automation in integrating intelligent systems; meanwhile, privacy protection support is achieved by anonymization through label embedding and reducing information correlation. The code of this study is available at: https://github.com/songhui01/CSM-H-R.
Abstract:Social media posts contain an abundant amount of information about public opinion on major events, especially natural disasters such as hurricanes. Posts related to an event, are usually published by the users who live near the place of the event at the time of the event. Special correlation between the social media data and the events can be obtained using data mining approaches. This paper presents research work to find the mappings between social media data and the severity level of a disaster. Specifically, we have investigated the Twitter data posted during hurricanes Harvey and Irma, and attempted to find the correlation between the Twitter data of a specific area and the hurricane level in that area. Our experimental results indicate a positive correlation between them. We also present a method to predict the hurricane category for a specific area using relevant Twitter data.