Abstract:This study presents a comprehensive methodology for modeling and forecasting the historical time series of fire spots detected by the AQUA_M-T satellite in the Amazon, Brazil. The approach utilizes a mixed Recurrent Neural Network (RNN) model, combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to predict monthly accumulations of daily detected fire spots. A summary of the data revealed a consistent seasonality over time, with annual maximum and minimum fire spot values tending to repeat at the same periods each year. The primary objective is to verify whether the forecasts capture this inherent seasonality through rigorous statistical analysis. The methodology involved careful data preparation, model configuration, and training using cross-validation with two seeds, ensuring that the data generalizes well to the test and validation sets, and confirming the convergence of the model parameters. The results indicate that the mixed LSTM and GRU model offers improved accuracy in forecasting 12 months ahead, demonstrating its effectiveness in capturing complex temporal patterns and modeling the observed time series. This research significantly contributes to the application of deep learning techniques in environmental monitoring, specifically in fire spot forecasting. In addition to improving forecast accuracy, the proposed approach highlights the potential for adaptation to other time series forecasting challenges, opening new avenues for research and development in machine learning and natural phenomenon prediction. Keywords: Time Series Forecasting, Recurrent Neural Networks, Deep Learning.