Abstract:The dynamic of real-world optimization problems raises new challenges to the traditional particle swarm optimization (PSO). Responding to these challenges, the dynamic optimization has received considerable attention over the past decade. This paper introduces a new dynamic multi-objective optimization based particle swarm optimization (Dynamic-MOPSO).The main idea of this paper is to solve such dynamic problem based on a new environment change detection strategy using the advantage of the particle swarm optimization. In this way, our approach has been developed not just to obtain the optimal solution, but also to have a capability to detect the environment changes. Thereby, DynamicMOPSO ensures the balance between the exploration and the exploitation in dynamic research space. Our approach is tested through the most popularized dynamic benchmark's functions to evaluate its performance as a good method.
Abstract:This paper investigates a new hybridization of multi-objective particle swarm optimization (MOPSO) and cooperative agents (MOPSO-CA) to handle the problem of stagnation encounters in MOPSO, which leads solutions to trap in local optima. The proposed approach involves a new distribution strategy based on the idea of having a set of a sub-population, each of which is processed by one agent. The number of the sub-population and agents are adjusted dynamically through the Pareto ranking. This method allocates a dynamic number of sub-population as required to improve diversity in the search space. Additionally, agents are used for better management for the exploitation within a sub-population, and for exploration among sub-populations. Furthermore, we investigate the automated negotiation within agents in order to share the best knowledge. To validate our approach, several benchmarks are performed. The results show that the introduced variant ensures the trade-off between the exploitation and exploration with respect to the comparative algorithms