Abstract:Rapid advancements in Large Language models (LLMs) has significantly enhanced their reasoning capabilities. Despite improved performance on benchmarks, LLMs exhibit notable gaps in their cognitive processes. Additionally, as reflections of human-generated data, these models have the potential to inherit cognitive biases, raising concerns about their reasoning and decision making capabilities. In this paper we present a framework to interpret, understand and provide insights into a host of cognitive biases in LLMs. Conducting our research on frontier language models we're able to elucidate reasoning limitations and biases, and provide reasoning behind these biases by constructing influence graphs that identify phrases and words most responsible for biases manifested in LLMs. We further investigate biases such as round number bias and cognitive bias barrier revealed when noting framing effect in language models.
Abstract:In this study, we apply two pillars of Scientific Machine Learning: Neural Ordinary Differential Equations (Neural ODEs) and Universal Differential Equations (UDEs) to the Lotka Volterra Predator Prey Model, a fundamental ecological model describing the dynamic interactions between predator and prey populations. The Lotka-Volterra model is critical for understanding ecological dynamics, population control, and species interactions, as it is represented by a system of differential equations. In this work, we aim to uncover the underlying differential equations without prior knowledge of the system, relying solely on training data and neural networks. Using robust modeling in the Julia programming language, we demonstrate that both Neural ODEs and UDEs can be effectively utilized for prediction and forecasting of the Lotka-Volterra system. More importantly, we introduce the forecasting breakdown point: the time at which forecasting fails for both Neural ODEs and UDEs. We observe how UDEs outperform Neural ODEs by effectively recovering the underlying dynamics and achieving accurate forecasting with significantly less training data. Additionally, we introduce Gaussian noise of varying magnitudes (from mild to high) to simulate real-world data perturbations and show that UDEs exhibit superior robustness, effectively recovering the underlying dynamics even in the presence of noisy data, while Neural ODEs struggle with high levels of noise. Through extensive hyperparameter optimization, we offer insights into neural network architectures, activation functions, and optimizers that yield the best results. This study opens the door to applying Scientific Machine Learning frameworks for forecasting tasks across a wide range of ecological and scientific domains.
Abstract:In this study, we apply two pillars of Scientific Machine Learning: Neural Ordinary Differential Equations (Neural ODEs) and Universal Differential Equations (UDEs) to the Chandrasekhar White Dwarf Equation (CWDE). The CWDE is fundamental for understanding the life cycle of a star, and describes the relationship between the density of the white dwarf and its distance from the center. Despite the rise in Scientific Machine Learning frameworks, very less attention has been paid to the systematic applications of the above SciML pillars on astronomy based ODEs. Through robust modeling in the Julia programming language, we show that both Neural ODEs and UDEs can be used effectively for both prediction as well as forecasting of the CWDE. More importantly, we introduce the forecasting breakdown point - the time at which forecasting fails for both Neural ODEs and UDEs. Through a robust hyperparameter optimization testing, we provide insights on the neural network architecture, activation functions and optimizers which provide the best results. This study provides opens a door to investigate the applicability of Scientific Machine Learning frameworks in forecasting tasks for a wide range of scientific domains.
Abstract:Carbon emissions are rising at an alarming rate, posing a significant threat to global efforts to mitigate climate change. Electric vehicles have emerged as a promising solution, but their reliance on lithium-ion batteries introduces the critical challenge of battery degradation. Accurate prediction and forecasting of battery degradation over both short and long time spans are essential for optimizing performance, extending battery life, and ensuring effective long-term energy management. This directly influences the reliability, safety, and sustainability of EVs, supporting their widespread adoption and aligning with key UN SDGs. In this paper, we present a novel approach to the prediction and long-term forecasting of battery degradation using Scientific Machine Learning framework which integrates domain knowledge with neural networks, offering more interpretable and scientifically grounded solutions for both predicting short-term battery health and forecasting degradation over extended periods. This hybrid approach captures both known and unknown degradation dynamics, improving predictive accuracy while reducing data requirements. We incorporate ground-truth data to inform our models, ensuring that both the predictions and forecasts reflect practical conditions. The model achieved MSE of 9.90 with the UDE and 11.55 with the NeuralODE, in experimental data, a loss of 1.6986 with the UDE, and a MSE of 2.49 in the NeuralODE, demonstrating the enhanced precision of our approach. This integration of data-driven insights with SciML's strengths in interpretability and scalability allows for robust battery management. By enhancing battery longevity and minimizing waste, our approach contributes to the sustainability of energy systems and accelerates the global transition toward cleaner, more responsible energy solutions, aligning with the UN's SDG agenda.
Abstract:In climate science, models for global warming and weather prediction face significant challenges due to the limited availability of high-quality data and the difficulty in obtaining it, making data efficiency crucial. In the past few years, Scientific Machine Learning (SciML) models have gained tremendous traction as they can be trained in a data-efficient manner, making them highly suitable for real-world climate applications. Despite this, very little attention has been paid to chaotic climate system modeling utilizing SciML methods. In this paper, we have integrated SciML methods into foundational weather models, where we have enhanced large-scale climate predictions with a physics-informed approach that achieves high accuracy with reduced data. We successfully demonstrate that by combining the interpretability of physical climate models with the computational power of neural networks, SciML models can prove to be a reliable tool for modeling climate. This indicates a shift from the traditional black box-based machine learning modeling of climate systems to physics-informed decision-making, leading to effective climate policy implementation.
Abstract:As LLMs become increasingly proficient at producing human-like responses, there has been a rise of academic and industrial pursuits dedicated to flagging a given piece of text as "human" or "AI". Most of these pursuits involve modern NLP detectors like T5-Sentinel and RoBERTa-Sentinel, without paying too much attention to issues of interpretability and explainability of these models. In our study, we provide a comprehensive analysis that shows that traditional ML models (Naive-Bayes,MLP, Random Forests, XGBoost) perform as well as modern NLP detectors, in human vs AI text detection. We achieve this by implementing a robust testing procedure on diverse datasets, including curated corpora and real-world samples. Subsequently, by employing the explainable AI technique LIME, we uncover parts of the input that contribute most to the prediction of each model, providing insights into the detection process. Our study contributes to the growing need for developing production-level LLM detection tools, which can leverage a wide range of traditional as well as modern NLP detectors we propose. Finally, the LIME techniques we demonstrate also have the potential to equip these detection tools with interpretability analysis features, making them more reliable and trustworthy in various domains like education, healthcare, and media.