Abstract:This paper addresses the problem of estimating the modes of an observed non-stationary mixture signal in the presence of an arbitrary distributed noise. A novel Bayesian model is introduced to estimate the model parameters from the spectrogram of the observed signal, by resorting to the stochastic version of the EM algorithm to avoid the computationally expensive joint parameters estimation from the posterior distribution. The proposed method is assessed through comparative experiments with state-of-the-art methods. The obtained results validate the proposed approach by highlighting an improvement of the modes estimation performance.