Abstract:Proximity Distribution Kernel is an effective method for bag-of-featues based image representation. In this paper, we investigate the soft assignment of visual words to image features for proximity distribution. Visual word contribution function is proposed to model ambiguous proximity distributions. Three ambiguous proximity distributions is developed by three ambiguous contribution functions. The experiments are conducted on both classification and retrieval of medical image data sets. The results show that the performance of the proposed methods, Proximity Distribution Kernel (PDK), is better or comparable to the state-of-the-art bag-of-features based image representation methods.