Abstract:Artificial intelligence operations (AIOps) play a pivotal role in identifying, mitigating, and analyzing anomalous system behaviors and alerts. However, the research landscape in this field remains limited, leaving significant gaps unexplored. This study introduces a novel hybrid framework through an innovative algorithm that incorporates an unsupervised strategy. This strategy integrates Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs) and uses a custom loss function to substantially enhance the effectiveness of log anomaly detection. The proposed approach encompasses the utilization of both simulated and real-world datasets, including logs from SockShop and Hadoop Distributed File System (HDFS). The experimental results are highly promising, demonstrating significant reductions in pseudo-positives. Moreover, this strategy offers notable advantages, such as the ability to process logs in their raw, unprocessed form, and the potential for further enhancements. The successful implementation of this approach showcases a remarkable reduction in anomalous logs, thus unequivocally establishing the efficacy of the proposed methodology. Ultimately, this study makes a substantial contribution to the advancement of log anomaly detection within AIOps platforms, addressing the critical need for effective and efficient log analysis in modern and complex systems.
Abstract:Pothole detection is crucial for road safety and maintenance, traditionally relying on 2D image segmentation. However, existing 3D Semantic Pothole Segmentation research often overlooks point cloud sparsity, leading to suboptimal local feature capture and segmentation accuracy. Our research presents an innovative point cloud-based pothole segmentation architecture. Our model efficiently identifies hidden features and uses a feedback mechanism to enhance local characteristics, improving feature presentation. We introduce a local relationship learning module to understand local shape relationships, enhancing structural insights. Additionally, we propose a lightweight adaptive structure for refining local point features using the K nearest neighbor algorithm, addressing point cloud density differences and domain selection. Shared MLP Pooling is integrated to learn deep aggregation features, facilitating semantic data exploration and segmentation guidance. Extensive experiments on three public datasets confirm PotholeGuard's superior performance over state-of-the-art methods. Our approach offers a promising solution for robust and accurate 3D pothole segmentation, with applications in road maintenance and safety.
Abstract:In recent years, the cellular industry has witnessed a major evolution in communication technologies. It is evident that the Next Generation of cellular networks(NGN) will play a pivotal role in the acceptance of emerging IoT applications supporting high data rates, better Quality of Service(QoS), and reduced latency. However, the deployment of NGN will introduce a power overhead on the communication infrastructure. Addressing the critical energy constraints in 5G and beyond, this study introduces an innovative load transfer method using drone-carried airborne base stations (BSs) for stable and secure power reallocation within a green micro-grid network. This method effectively manages energy deficit by transferring aerial BSs from high to low-energy cells, depending on user density and the availability of aerial BSs, optimizing power distribution in advanced cellular networks. The complexity of the proposed system is significantly lower as compared to existing power cable transmission systems currently employed in powering the BSs. Furthermore, our proposed algorithm has been shown to reduce BS power outages while requiring a minimum number of drone exchanges. We have conducted a thorough review on real-world dataset to prove the efficacy of our proposed approach to support BS during high load demand times