Abstract:Physics-based differentiable rendering (PBDR) has become an efficient method in computer vision, graphics, and machine learning for addressing an array of inverse problems. PBDR allows patterns to be generated from perceptions which can be applied to enhance object attributes like geometry, substances, and lighting by adding physical models of light propagation and materials interaction. Due to these capabilities, distinguished rendering has been employed in a wider range of sectors such as autonomous navigation, scene reconstruction, and material design. We provide an extensive overview of PBDR techniques in this study, emphasizing their creation, effectiveness, and limitations while managing inverse situations. We demonstrate modern techniques and examine their value in everyday situations.
Abstract:Volumetric video, the capture and display of three-dimensional (3D) imagery, has emerged as a revolutionary technology poised to transform the media landscape, enabling immersive experiences that transcend the limitations of traditional 2D video. One of the key challenges in this domain is the efficient delivery of these high-bandwidth, data-intensive volumetric video streams, which requires innovative transcoding and compression techniques. This research paper explores the state-of-the-art in volumetric video compression and delivery, with a focus on the potential of AI-driven solutions to address the unique challenges posed by this emerging medium.