Abstract:Plant disease detection is a critical task in agriculture, directly impacting crop yield, food security, and sustainable farming practices. This study proposes FourCropNet, a novel deep learning model designed to detect diseases in multiple crops, including CottonLeaf, Grape, Soybean, and Corn. The model leverages an advanced architecture comprising residual blocks for efficient feature extraction, attention mechanisms to enhance focus on disease-relevant regions, and lightweight layers for computational efficiency. These components collectively enable FourCropNet to achieve superior performance across varying datasets and class complexities, from single-crop datasets to combined datasets with 15 classes. The proposed model was evaluated on diverse datasets, demonstrating high accuracy, specificity, sensitivity, and F1 scores. Notably, FourCropNet achieved the highest accuracy of 99.7% for Grape, 99.5% for Corn, and 95.3% for the combined dataset. Its scalability and ability to generalize across datasets underscore its robustness. Comparative analysis shows that FourCropNet consistently outperforms state-of-the-art models such as MobileNet, VGG16, and EfficientNet across various metrics. FourCropNet's innovative design and consistent performance make it a reliable solution for real-time disease detection in agriculture. This model has the potential to assist farmers in timely disease diagnosis, reducing economic losses and promoting sustainable agricultural practices.
Abstract:The first MRI scan was done in the year 1978 by researchers at EML Laboratories. As per an estimate, approximately 251,329 people died due to primary cancerous brain and CNS (Central Nervous System) Tumors in the year 2020. It has been recommended by various medical professionals that brain tumor detection at an early stage would help in saving many lives. Whenever radiologists deal with a brain MRI they try to diagnose it with the histological subtype which is quite subjective and here comes the major issue. Upon that, in developing countries like India, where there is 1 doctor for every 1151 people, the need for efficient diagnosis to help radiologists and doctors come into picture. In our approach, we aim to solve the problem using swin transformers and deep learning to detect, classify, locate and provide the size of the tumor in the particular MRI scan which would assist the doctors and radiologists in increasing their efficiency. At the end, the medics would be able to download the predictions and measures in a PDF (Portable Document Format). Keywords: brain tumor, transformers, classification, medical, deep learning, detection