Abstract:This chapter presents methodological reflections on the necessity and utility of artificial intelligence in generative design. Specifically, the chapter discusses how generative design processes can be augmented by AI to deliver in terms of a few outcomes of interest or performance indicators while dealing with hundreds or thousands of small decisions. The core of the performance-based generative design paradigm is about making statistical or simulation-driven associations between these choices and consequences for mapping and navigating such a complex decision space. This chapter will discuss promising directions in Artificial Intelligence for augmenting decision-making processes in architectural design for mapping and navigating complex design spaces.
Abstract:The UNESCO World Heritage List (WHL) is to identify the exceptionally valuable cultural and natural heritage to be preserved for mankind as a whole. Evaluating and justifying the Outstanding Universal Value (OUV) of each nomination in WHL is essentially important for a property to be inscribed, and yet a complex task even for experts since the criteria are not mutually exclusive. Furthermore, manual annotation of heritage values, which is currently dominant in the field, is knowledge-demanding and time-consuming, impeding systematic analysis of such authoritative documents in terms of their implications on heritage management. This study applies state-of-the-art NLP models to build a classifier on a new real-world dataset containing official OUV justification statements, seeking an explainable, scalable, and less biased automation tool to facilitate the nomination, evaluation, and monitoring processes of World Heritage properties. Label smoothing is innovatively adapted to transform the task smoothly between multi-class and multi-label classification by adding prior inter-class relationship knowledge into the labels, improving the performance of most baselines. The study shows that the best models fine-tuned from BERT and ULMFiT can reach 94.3% top-3 accuracy, which is promising to be further developed and applied in heritage research and practice.