Abstract:Incremental learning is the ability of systems to acquire knowledge over time, enabling their adaptation and generalization to novel tasks. It is a critical ability for intelligent, real-world systems, especially when data changes frequently or is limited. This review provides a comprehensive analysis of incremental learning in Large Language Models. It synthesizes the state-of-the-art incremental learning paradigms, including continual learning, meta-learning, parameter-efficient learning, and mixture-of-experts learning. We demonstrate their utility for incremental learning by describing specific achievements from these related topics and their critical factors. An important finding is that many of these approaches do not update the core model, and none of them update incrementally in real-time. The paper highlights current problems and challenges for future research in the field. By consolidating the latest relevant research developments, this review offers a comprehensive understanding of incremental learning and its implications for designing and developing LLM-based learning systems.
Abstract:Real-time learning concerns the ability of learning systems to acquire knowledge over time, enabling their adaptation and generalization to novel tasks. It is a critical ability for intelligent, real-world systems, especially when data may be insufficient or difficult to obtain. This review provides a comprehensive analysis of real-time learning in Large Language Models. It synthesizes the state-of-the-art real-time learning paradigms, including continual learning, meta-learning, parameter-efficient learning, and mixture-of-experts learning. We demonstrate their utility for real-time learning by describing specific achievements from these related topics and their critical factors. Finally, the paper highlights current problems and challenges for future research in the field. By consolidating the latest relevant research developments, this review offers a comprehensive understanding of real-time learning and its implications for designing and developing LLM-based learning systems addressing real-world problems.
Abstract:Little demonstrable progress has been made toward AGI (Artificial General Intelligence) since the term was coined some 20 years ago. In spite of the fantastic breakthroughs in Statistical AI such as AlphaZero, ChatGPT, and Stable Diffusion none of these projects have, or claim to have, a clear path to AGI. In order to expedite the development of AGI it is crucial to understand and identify the core requirements of human-like intelligence as it pertains to AGI. From that one can distill which particular development steps are necessary to achieve AGI, and which are a distraction. Such analysis highlights the need for a Cognitive AI approach rather than the currently favored statistical and generative efforts. More specifically it identifies the central role of concepts in human-like cognition. Here we outline an architecture and development plan, together with some preliminary results, that offers a much more direct path to full Human-Level AI (HLAI)/ AGI.
Abstract:The original vision of AI was re-articulated in 2002 via the term 'Artificial General Intelligence' or AGI. This vision is to build 'Thinking Machines' - computer systems that can learn, reason, and solve problems similar to the way humans do. This is in stark contrast to the 'Narrow AI' approach practiced by almost everyone in the field over the many decades. While several large-scale efforts have nominally been working on AGI (most notably DeepMind), the field of pure focused AGI development has not been well funded or promoted. This is surprising given the fantastic value that true AGI can bestow on humanity. In addition to the dearth of effort in this field, there are also several theoretical and methodical missteps that are hampering progress. We highlight why purely statistical approaches are unlikely to lead to AGI, and identify several crucial cognitive abilities required to achieve human-like adaptability and autonomous learning. We conclude with a survey of socio-technical factors that have undoubtedly slowed progress towards AGI.