Abstract:In this article, the effect a moving target has on the signal-to-interference-plus-noise-ratio (SINR) for high time-bandwidth noise radars is investigated. To compensate for cell migration we apply a computationally efficient stretch processing algorithm that is tailored for batched processing and suitable for implementation onto a real-time radar processor. The performance of the algorithm is studied using experimental data. In the experiment, pseudorandom noise, with a bandwidth of 100 MHz, is generated and transmitted in real-time. An unmanned aerial vehicle (UAV), flown at a speed of 11 m/s, is acting as a target. For an integration time of 1 s, the algorithm is shown to yield an increase in SINR of roughly 13 dB, compared to no compensation. It is also shown that coherent integration times of 2.5 s can be achieved.
Abstract:Predicting the performance of traveling-wave parametric amplifiers (TWPAs) based on nonlinear elements like superconducting Josephson junctions (JJs) is vital for qubit read-out in quantum computers. The purpose of this article is twofold: (a) to demonstrate how nonlinear inductors based on combinations of JJs can be modeled in commercial circuit simulators, and (b) to show how the harmonic balance (HB) is used in the reliable prediction of the amplifier performance e.g., gain and pump harmonic power conversion. Experimental characterization of two types of TWPA architectures is compared with simulations to showcase the reliability of the HB method. We disseminate the modeling know-how and techniques to new designers of parametric amplifiers.