Abstract:Local news organizations face an urgent need to boost reader engagement amid declining circulation and competition from global media. Personalized news recommender systems offer a promising solution by tailoring content to user interests. Yet, conventional approaches often emphasize general preferences and may overlook nuanced or eclectic interests in local news. We propose a hybrid news recommender that integrates local and global preference models to improve engagement. Building on evidence of the value of localized models, our method unifies local and non-local predictors in one framework. The system adaptively combines recommendations from a local model, specialized in region-specific content, and a global model that captures broader preferences. Ensemble strategies and multiphase training balance the two. We evaluated the model on two datasets: a synthetic set based on Syracuse newspaper distributions and a Danish dataset (EB-NeRD) labeled for local and non-local content with an LLM. Results show our integrated approach outperforms single-model baselines in accuracy and coverage, suggesting improved personalization that can drive user engagement. The findings have practical implications for publishers, especially local outlets. By leveraging both community-specific and general user interests, the hybrid recommender can deliver more relevant content, increasing retention and subscriptions. In sum, this work introduces a new direction for recommender systems, bridging local and global models to revitalize local news consumption through scalable, personalized user experiences.
Abstract:American local newspapers have been experiencing a large loss of reader retention and business within the past 15 years due to the proliferation of online news sources. Local media companies are starting to shift from an advertising-supported business model to one based on subscriptions to mitigate this problem. With this subscription model, there is a need to increase user engagement and personalization, and recommender systems are one way for these news companies to accomplish this goal. However, using standard modeling approaches that focus on users' global preferences is not appropriate in this context because the local preferences of users exhibit some specific characteristics which do not necessarily match their long-term or global preferences in the news. Our research explores a localized session-based recommendation approach, using recommendations based on local news articles and articles pertaining to the different local news categories. Experiments performed on a news dataset from a local newspaper show that these local models, particularly certain categories of items, do indeed provide more accuracy and effectiveness for personalization which, in turn, may lead to more user engagement with local news content.