Abstract:The applicability of widely adopted machine learning (ML) methods to classification is circumscribed by the imperatives of explicability and uncertainty, particularly evident in domains such as healthcare, behavioural sciences, and finances, wherein accountability assumes priority. Recently, Small and Incomplete Dataset Analyser (SaNDA) has been proposed to enhance the ability to perform classification in such domains, by developing a data abstraction protocol using a ROC curve-based method. This paper focuses on column-wise data transformations called abstractions, which are crucial for SaNDA's classification process and explores alternative abstractions protocols, such as constant binning and quantiles. The best-performing methods have been compared against Random Forest as a baseline for explainable methods. The results suggests that SaNDA can be a viable substitute for Random Forest when data is incomplete, even with minimal missing values. It consistently maintains high accuracy even when half of the dataset is missing, unlike Random Forest which experiences a significant decline in accuracy under similar conditions.