Abstract:We present CREST (Compact Retrieval-Based Speculative Decoding), a redesign of REST that allows it to be effectively "compacted". REST is a drafting technique for speculative decoding based on retrieving exact n-gram matches of the most recent n tokens generated by the target LLM from a datastore. The key idea of CREST is to only store a subset of the smallest and most common n-grams in the datastore with the hope of achieving comparable performance with less storage space. We found that storing a subset of n-grams both reduces storage space and improves performance. CREST matches REST's accepted token length with 10.6-13.5x less storage space and achieves a 16.5-17.1% higher acceptance length than REST using the same storage space on the HumanEval and MT Bench benchmarks.
Abstract:An object detector performs suboptimally when applied to image data taken from a viewpoint different from the one with which it was trained. In this paper, we present a viewpoint adaptation algorithm that allows a trained single-view object detector to be adapted to a new, distinct viewpoint. We first illustrate how a feature space transformation can be inferred from a known homography between the source and target viewpoints. Second, we show that a variety of trained classifiers can be modified to behave as if that transformation were applied to each testing instance. The proposed algorithm is evaluated on a person detection task using images from the PETS 2007 and CAVIAR datasets, as well as from a new synthetic multi-view person detection dataset. It yields substantial performance improvements when adapting single-view person detectors to new viewpoints, and simultaneously reduces computational complexity. This work has the potential to improve detection performance for cameras viewing objects from arbitrary viewpoints, while simplifying data collection and feature extraction.