IISER Bhopal, India
Abstract:Few-shot class incremental learning implies the model to learn new classes while retaining knowledge of previously learned classes with a small number of training instances. Existing frameworks typically freeze the parameters of the previously learned classes during the incorporation of new classes. However, this approach often results in suboptimal class separation of previously learned classes, leading to overlap between old and new classes. Consequently, the performance of old classes degrades on new classes. To address these challenges, we propose a novel feature augmentation driven contrastive learning framework designed to enhance the separation of previously learned classes to accommodate new classes. Our approach involves augmenting feature vectors and assigning proxy labels to these vectors. This strategy expands the feature space, ensuring seamless integration of new classes within the expanded space. Additionally, we employ a self-supervised contrastive loss to improve the separation between previous classes. We validate our framework through experiments on three FSCIL benchmark datasets: CIFAR100, miniImageNet, and CUB200. The results demonstrate that our Feature Augmentation driven Contrastive Learning framework significantly outperforms other approaches, achieving state-of-the-art performance.
Abstract:In machine learning applications, gradual data ingress is common, especially in audio processing where incremental learning is vital for real-time analytics. Few-shot class-incremental learning addresses challenges arising from limited incoming data. Existing methods often integrate additional trainable components or rely on a fixed embedding extractor post-training on base sessions to mitigate concerns related to catastrophic forgetting and the dangers of model overfitting. However, using cross-entropy loss alone during base session training is suboptimal for audio data. To address this, we propose incorporating supervised contrastive learning to refine the representation space, enhancing discriminative power and leading to better generalization since it facilitates seamless integration of incremental classes, upon arrival. Experimental results on NSynth and LibriSpeech datasets with 100 classes, as well as ESC dataset with 50 and 10 classes, demonstrate state-of-the-art performance.