Abstract:Medical imaging is nowadays a pillar in diagnostics and therapeutic follow-up. Current research tries to integrate established - but ionizing - tomographic techniques with technologies offering reduced radiation exposure. Diffuse Optical Tomography (DOT) uses non-ionizing light in the Near-Infrared (NIR) window to reconstruct optical coefficients in living beings, providing functional indications about the composition of the investigated organ/tissue. Due to predominant light scattering at NIR wavelengths, DOT reconstruction is, however, a severely ill-conditioned inverse problem. Conventional reconstruction approaches show severe weaknesses when dealing also with mildly complex cases and/or are computationally very intensive. In this work we explore deep learning techniques for DOT inversion. Namely, we propose a fully data-driven approach based on a modularity concept: first data and originating signal are separately processed via autoencoders, then the corresponding low-dimensional latent spaces are connected via a bridging network which acts at the same time as a learned regularizer.
Abstract:Objectives. Sustainable management of plant diseases is an open challenge which has relevant economic and environmental impact. Optimal strategies rely on human expertise for field scouting under favourable conditions to assess the current presence and extent of disease symptoms. This labor-intensive task is complicated by the large field area to be scouted, combined with the millimeter-scale size of the early symptoms to be detected. In view of this, image-based detection of early disease symptoms is an attractive approach to automate this process, enabling a potential high throughput monitoring at sustainable costs. Methods. Deep learning has been successfully applied in various domains to obtain an automatic selection of the relevant image features by learning filters via a training procedure. Deep learning has recently entered also the domain of plant disease detection: following this idea, in this work we present a deep learning approach to automatically recognize powdery mildew on cucumber leaves. We focus on unsupervised deep learning techniques applied to multispectral imaging data and we propose the use of autoencoder architectures to investigate two strategies for disease detection: i) clusterization of features in a compressed space; ii) anomaly detection. Results. The two proposed approaches have been assessed by quantitative indices. The clusterization approach is not fully capable by itself to provide accurate predictions but it does cater relevant information. Anomaly detection has instead a significant potential of resolution which could be further exploited as a prior for supervised architectures with a very limited number of labeled samples.
Abstract:Objectives. We generate via advanced Deep Learning (DL) techniques artificial leaf images in an automatized way. We aim to dispose of a source of training samples for AI applications for modern crop management. Such applications require large amounts of data and, while leaf images are not truly scarce, image collection and annotation remains a very time--consuming process. Data scarcity can be addressed by augmentation techniques consisting in simple transformations of samples belonging to a small dataset, but the richness of the augmented data is limited: this motivates the search for alternative approaches. Methods. Pursuing an approach based on DL generative models, we propose a Leaf-to-Leaf Translation (L2L) procedure structured in two steps: first, a residual variational autoencoder architecture generates synthetic leaf skeletons (leaf profile and veins) starting from companions binarized skeletons of real images. In a second step, we perform translation via a Pix2pix framework, which uses conditional generator adversarial networks to reproduce the colorization of leaf blades, preserving the shape and the venation pattern. Results. The L2L procedure generates synthetic images of leaves with a realistic appearance. We address the performance measurement both in a qualitative and a quantitative way; for this latter evaluation, we employ a DL anomaly detection strategy which quantifies the degree of anomaly of synthetic leaves with respect to real samples. Conclusions. Generative DL approaches have the potential to be a new paradigm to provide low-cost meaningful synthetic samples for computer-aided applications. The present L2L approach represents a step towards this goal, being able to generate synthetic samples with a relevant qualitative and quantitative resemblance to real leaves.