Abstract:In this article, we present a Latent Diffusion Model (LDM) for the generation of brain Magnetic Resonance Imaging (MRI), conditioning its generation based on pathology (Healthy, Glioblastoma, Sclerosis, Dementia) and acquisition modality (T1w, T1ce, T2w, Flair, PD). To evaluate the quality of the generated images, the Fr\'echet Inception Distance (FID) and Multi-Scale Structural Similarity Index (MS-SSIM) metrics were employed. The results indicate that the model generates images with a distribution similar to real ones, maintaining a balance between visual fidelity and diversity. Additionally, the model demonstrates extrapolation capability, enabling the generation of configurations that were not present in the training data. The results validate the potential of the model to increase in the number of samples in clinical datasets, balancing underrepresented classes, and evaluating AI models in medicine, contributing to the development of diagnostic tools in radiology without compromising patient privacy.
Abstract:Prognosis after intracranial hemorrhage (ICH) is influenced by a complex interplay between imaging and tabular data. Rapid and reliable prognosis are crucial for effective patient stratification and informed treatment decision-making. In this study, we aim to enhance image-based prognosis by learning a robust feature representation shared between prognosis and the clinical and demographic variables most highly correlated with it. Our approach mimics clinical decision-making by reinforcing the model to learn valuable prognostic data embedded in the image. We propose a 3D multi-task image model to predict prognosis, Glasgow Coma Scale and age, improving accuracy and interpretability. Our method outperforms current state-of-the-art baseline image models, and demonstrates superior performance in ICH prognosis compared to four board-certified neuroradiologists using only CT scans as input. We further validate our model with interpretability saliency maps. Code is available at https://github.com/MiriamCobo/MultitaskLearning_ICH_Prognosis.git.