Abstract:Policies of Markov Decision Processes (MDPs) determine the next action to execute from the current state and, possibly, the history (the past states). When the number of states is large, succinct representations are often used to compactly represent both the MDPs and the policies in a reduced amount of space. In this paper, some problems related to the size of succinctly represented policies are analyzed. Namely, it is shown that some MDPs have policies that can only be represented in space super-polynomial in the size of the MDP, unless the polynomial hierarchy collapses. This fact motivates the study of the problem of deciding whether a given MDP has a policy of a given size and reward. Since some algorithms for MDPs work by finding a succinct representation of the value function, the problem of deciding the existence of a succinct representation of a value function of a given size and reward is also considered.
Abstract:Independence -- the study of what is relevant to a given problem of reasoning -- has received an increasing attention from the AI community. In this paper, we consider two basic forms of independence, namely, a syntactic one and a semantic one. We show features and drawbacks of them. In particular, while the syntactic form of independence is computationally easy to check, there are cases in which things that intuitively are not relevant are not recognized as such. We also consider the problem of forgetting, i.e., distilling from a knowledge base only the part that is relevant to the set of queries constructed from a subset of the alphabet. While such process is computationally hard, it allows for a simplification of subsequent reasoning, and can thus be viewed as a form of compilation: once the relevant part of a knowledge base has been extracted, all reasoning tasks to be performed can be simplified.
Abstract:We investigate the space efficiency of a Propositional Knowledge Representation (PKR) formalism. Intuitively, the space efficiency of a formalism F in representing a certain piece of knowledge A, is the size of the shortest formula of F that represents A. In this paper we assume that knowledge is either a set of propositional interpretations (models) or a set of propositional formulae (theorems). We provide a formal way of talking about the relative ability of PKR formalisms to compactly represent a set of models or a set of theorems. We introduce two new compactness measures, the corresponding classes, and show that the relative space efficiency of a PKR formalism in representing models/theorems is directly related to such classes. In particular, we consider formalisms for nonmonotonic reasoning, such as circumscription and default logic, as well as belief revision operators and the stable model semantics for logic programs with negation. One interesting result is that formalisms with the same time complexity do not necessarily belong to the same space efficiency class.