Abstract:Theoretical studies on the representation power of GNNs have been centered around understanding the equivalence of GNNs, using WL-Tests for detecting graph isomorphism. In this paper, we argue that such equivalence ignores the accompanying optimization issues and does not provide a holistic view of the GNN learning process. We illustrate these gaps between representation and optimization with examples and experiments. We also explore the existence of an implicit inductive bias (e.g. fully connected networks prefer to learn low frequency functions in their input space) in GNNs, in the context of graph classification tasks. We further prove theoretically that the message-passing layers in the graph, have a tendency to search for either discriminative subgraphs, or a collection of discriminative nodes dispersed across the graph, depending on the different global pooling layers used. We empirically verify this bias through experiments over real-world and synthetic datasets. Finally, we show how our work can help in incorporating domain knowledge via attention based architectures, and can evince their capability to discriminate coherent subgraphs.