Abstract:Randomly perturbing networks during the training process is a commonly used approach to improving generalization performance. In this paper, we present a theoretical study of one particular way of random perturbation, which corresponds to injecting artificial noise to the training data. We provide a precise asymptotic characterization of the training and generalization errors of such randomly perturbed learning problems on a random feature model. Our analysis shows that Gaussian noise injection in the training process is equivalent to introducing a weighted ridge regularization, when the number of noise injections tends to infinity. The explicit form of the regularization is also given. Numerical results corroborate our asymptotic predictions, showing that they are accurate even in moderate problem dimensions. Our theoretical predictions are based on a new correlated Gaussian equivalence conjecture that generalizes recent results in the study of random feature models.
Abstract:Transfer learning seeks to improve the generalization performance of a target task by exploiting the knowledge learned from a related source task. Central questions include deciding what information one should transfer and when transfer can be beneficial. The latter question is related to the so-called negative transfer phenomenon, where the transferred source information actually reduces the generalization performance of the target task. This happens when the two tasks are sufficiently dissimilar. In this paper, we present a theoretical analysis of transfer learning by studying a pair of related perceptron learning tasks. Despite the simplicity of our model, it reproduces several key phenomena observed in practice. Specifically, our asymptotic analysis reveals a phase transition from negative transfer to positive transfer as the similarity of the two tasks moves past a well-defined threshold.