Abstract:Sodium MRI is an imaging technique used to visualize and quantify sodium concentrations in vivo, playing a role in many biological processes and potentially aiding in breast cancer characterization. Sodium MRI, however, suffers from inherently low signal-to-noise ratios (SNR) and spatial resolution, compared with conventional proton MRI. A deep-learning method, the Denoising Diffusion Probabilistic Models (DDPM), has demonstrated success across a wide range of denoising tasks, yet struggles with sodium MRI's unique noise profile, as DDPM primarily targets Gaussian noise. DDPM can distort features when applied to sodium MRI. This paper advances the DDPM by introducing the Rician Denoising Diffusion Probabilistic Models (RDDPM) for sodium MRI denoising. RDDPM converts Rician noise to Gaussian noise at each timestep during the denoising process. The model's performance is evaluated using three non-reference image quality assessment metrics, where RDDPM consistently outperforms DDPM and other CNN-based denoising methods.
Abstract:New multinuclear MRI techniques, such as sodium MRI, generally suffer from low image quality due to an inherently low signal. Postprocessing methods, such as image denoising, have been developed for image enhancement. However, the assessment of these enhanced images is challenging especially considering when there is a lack of high resolution and high signal images as reference, such as in sodium MRI. No-reference Image Quality Assessment (NR-IQA) metrics are approaches to solve this problem. Existing learning-based NR-IQA metrics rely on labels derived from subjective human opinions or metrics like Signal-to-Noise Ratio (SNR), which are either time-consuming or lack accurate ground truths, resulting in unreliable assessment. We note that deep learning (DL) models have a unique characteristic in that they are specialized to a characteristic training set, meaning that deviations between the input testing data from the training data will reduce prediction accuracy. Therefore, we propose a novel DL-based NR-IQA metric, the Model Specialization Metric (MSM), which does not depend on ground-truth images or labels. MSM measures the difference between the input image and the model's prediction for evaluating the quality of the input image. Experiments conducted on both simulated distorted proton T1-weighted MR images and denoised sodium MR images demonstrate that MSM exhibits a superior evaluation performance on various simulated noises and distortions. MSM also has a substantial agreement with the expert evaluations, achieving an averaged Cohen's Kappa coefficient of 0.6528, outperforming the existing NR-IQA metrics.