Abstract:In the family of Intelligent Transportation Systems (ITS), Multimodal Transport Systems (MMTS) have placed themselves as a mainstream transportation mean of our time as a feasible integrative transportation process. The Global Economy progressed with the help of transportation. The volume of goods and distances covered have doubled in the last ten years, so there is a high demand of an optimized transportation, fast but with low costs, saving resources but also safe, with low or zero emissions. Thus, it is important to have an overview of existing research in this field, to know what was already done and what is to be studied next. The main objective is to explore a beneficent selection of the existing research, methods and information in the field of multimodal transportation research, to identify industry needs and gaps in research and provide context for future research. The selective survey covers multimodal transport design and optimization in terms of: cost, time, and network topology. The multimodal transport theoretical aspects, context and resources are also covering various aspects. The survey's selection includes nowadays best methods and solvers for Intelligent Transportation Systems (ITS). The gap between theory and real-world applications should be further solved in order to optimize the global multimodal transportation system.
Abstract:The process of knowledge discovery involves nowadays a major number of techniques. Context-Aware Data Mining (CADM) and Collaborative Data Mining (CDM) are some of the recent ones. the current research proposes a new hybrid and efficient tool to design prediction models called Scenarios Platform-Collaborative & Context-Aware Data Mining (SP-CCADM). Both CADM and CDM approaches are included in the new platform in a flexible manner; SP-CCADM allows the setting and testing of multiple configurable scenarios related to data mining at once. The introduced platform was successfully tested and validated on real life scenarios, providing better results than each standalone technique-CADM and CDM. Nevertheless, SP-CCADM was validated with various machine learning algorithms-k-Nearest Neighbour (k-NN), Deep Learning (DL), Gradient Boosted Trees (GBT) and Decision Trees (DT). SP-CCADM makes a step forward when confronting complex data, properly approaching data contexts and collaboration between data. Numerical experiments and statistics illustrate in detail the potential of the proposed platform.