Abstract:Despite the need for financial data on company activities in developing countries for development research and economic analysis, such data does not exist. In this project, we develop and evaluate two Natural Language Processing (NLP) based techniques to address this issue. First, we curate a custom dataset specific to the domain of financial text data on developing countries and explore multiple approaches for information extraction. We then explore a text-to-text approach with the transformer-based T5 model with the goal of undertaking simultaneous NER and relation extraction. We find that this model is able to learn the custom text structure output data corresponding to the entities and their relations, resulting in an accuracy of 92.44\%, a precision of 68.25\% and a recall of 54.20\% from our best T5 model on the combined task. Secondly, we explore an approach with sequential NER and relation extration. For the NER, we run pre-trained and fine-tuned models using SpaCy, and we develop a custom relation extraction model using SpaCy's Dependency Parser output and some heuristics to determine entity relationships \cite{spacy}. We obtain an accuracy of 84.72\%, a precision of 6.06\% and a recall of 5.57\% on this sequential task.
Abstract:AI has been proposed as an important tool to support several efforts related to nature-based climate solutions such as the detection of wildfires that affect forests and vegetation-based offsets. While this and other use-cases provide important demonstrative value of the power of AI in climate change mitigation, such efforts have typically been undertaken in silos, without awareness of the integrative nature of real-world climate policy-making. In this paper, we propose a novel overarching framework for AI-aided integrated and comprehensive decision support for various aspects of nature-based climate decision-making. Focusing on vegetation-based solutions such as forests, we demonstrate how different AI-aided decision support models such as AI-aided wildfire detection, AI-aided vegetation carbon stock assessment, reversal risk mitigation, and disaster response planning can be integrated into a comprehensive framework. Rather than being disparate elements, we posit that the exchange of data and analytical results across elements of the framework, and careful mitigation of uncertainty propagation will provide tremendous value relative to the status-quo for real-world climate policy-making.
Abstract:While carbon accounting plays a fundamental role in our fight against climate change, it is not without its challenges. We begin the paper with a critique of the conventional carbon accounting practices, after which we proceed to introduce the E-liability carbon accounting methodology and Emissions Liability Management (ELM) originally proposed by Kaplan and Ramanna, highlighting their strengths. Recognizing the immense value of this novel approach for real-world carbon accounting improvement, we introduce a novel data-driven integrative framework that leverages AI and computation - the E-Liability Knowledge Graph framework - to achieve real-world implementation of the E-liability carbon accounting methodology. In addition to providing a path-to-implementation, our proposed framework brings clarity to the complex environmental interactions within supply chains, thus enabling better informed and more responsible decision-making. We analyze the implementation aspects of this framework and conclude with a discourse on the role of this AI-aided knowledge graph in ensuring the transparency and decarbonization of global supply chains.
Abstract:Carbon accounting is a fundamental building block in our global path to emissions reduction and decarbonization, yet many challenges exist in achieving reliable and trusted carbon accounting measures. We motivate that carbon accounting not only needs to be more data-driven, but also more methodologically sound. We discuss the need for alternative, more diverse data sources that can play a significant role on our path to trusted carbon accounting procedures and elaborate on not only why, but how Artificial Intelligence (AI) in general and Natural Language Processing (NLP) in particular can unlock reasonable access to a treasure trove of alternative data sets in light of the recent advances in the field that better enable the utilization of unstructured data in this process. We present a case study of the recent developments on real-world data via an NLP-powered analysis using OpenAI's GPT API on financial and shipping data. We conclude the paper with a discussion on how these methods and approaches can be integrated into a broader framework for AI-enabled integrative carbon accounting.