Abstract:This research paper proposes a novel methodology for image-to-image style transfer on objects utilizing a single deep convolutional neural network. The proposed approach leverages the You Only Look Once version 8 (YOLOv8) segmentation model and the backbone neural network of YOLOv8 for style transfer. The primary objective is to enhance the visual appeal of objects in images by seamlessly transferring artistic styles while preserving the original object characteristics. The proposed approach's novelty lies in combining segmentation and style transfer in a single deep convolutional neural network. This approach omits the need for multiple stages or models, thus resulting in simpler training and deployment of the model for practical applications. The results of this approach are shown on two content images by applying different style images. The paper also demonstrates the ability to apply style transfer on multiple objects in the same image.