Abstract:Social Anxiety Disorder (SAD) is a widespread mental health condition, yet its lack of objective markers hinders timely detection and intervention. While previous research has focused on behavioral and non-verbal markers of SAD in structured activities (e.g., speeches or interviews), these settings fail to replicate real-world, unstructured social interactions fully. Identifying non-verbal markers in naturalistic, unstaged environments is essential for developing ubiquitous and non-intrusive monitoring solutions. To address this gap, we present AnxietyFaceTrack, a study leveraging facial video analysis to detect anxiety in unstaged social settings. A cohort of 91 participants engaged in a social setting with unfamiliar individuals and their facial videos were recorded using a low-cost smartphone camera. We examined facial features, including eye movements, head position, facial landmarks, and facial action units, and used self-reported survey data to establish ground truth for multiclass (anxious, neutral, non-anxious) and binary (e.g., anxious vs. neutral) classifications. Our results demonstrate that a Random Forest classifier trained on the top 20% of features achieved the highest accuracy of 91.0% for multiclass classification and an average accuracy of 92.33% across binary classifications. Notably, head position and facial landmarks yielded the best performance for individual facial regions, achieving 85.0% and 88.0% accuracy, respectively, in multiclass classification, and 89.66% and 91.0% accuracy, respectively, across binary classifications. This study introduces a non-intrusive, cost-effective solution that can be seamlessly integrated into everyday smartphones for continuous anxiety monitoring, offering a promising pathway for early detection and intervention.
Abstract:Electrocardiograms (ECGs) are essential for monitoring cardiac health, allowing clinicians to analyze heart rate variability (HRV), detect abnormal rhythms, and diagnose cardiovascular diseases. However, ECG signals, especially those from wearable devices, are often affected by noise artifacts caused by motion, muscle activity, or device-related interference. These artifacts distort R-peaks and the characteristic QRS complex, making HRV analysis unreliable and increasing the risk of misdiagnosis. Despite this, the few existing studies on ECG noise detection have primarily focused on a single dataset, limiting the understanding of how well noise detection models generalize across different datasets. In this paper, we investigate the generalizability of noise detection in ECG using a novel HRV-based approach through cross-dataset experiments on four datasets. Our results show that machine learning achieves an average accuracy of over 90\% and an AUPRC of more than 0.9. These findings suggest that regardless of the ECG data source or the type of noise, the proposed method maintains high accuracy even on unseen datasets, demonstrating the feasibility of generalizability.
Abstract:Improving mental health support in developing countries is a pressing need. One potential solution is the development of scalable, automated systems to conduct diagnostic screenings, which could help alleviate the burden on mental health professionals. In this work, we evaluate several state-of-the-art Large Language Models (LLMs), with and without fine-tuning, on our custom dataset for generating concise summaries from mental state examinations. We rigorously evaluate four different models for summary generation using established ROUGE metrics and input from human evaluators. The results highlight that our top-performing fine-tuned model outperforms existing models, achieving ROUGE-1 and ROUGE-L values of 0.810 and 0.764, respectively. Furthermore, we assessed the fine-tuned model's generalizability on a publicly available D4 dataset, and the outcomes were promising, indicating its potential applicability beyond our custom dataset.