Abstract:Time-evolving graphs arise frequently when modeling complex dynamical systems such as social networks, traffic flow, and biological processes. Developing techniques to identify and analyze communities in these time-varying graph structures is an important challenge. In this work, we generalize existing spectral clustering algorithms from static to dynamic graphs using canonical correlation analysis (CCA) to capture the temporal evolution of clusters. Based on this extended canonical correlation framework, we define the dynamic graph Laplacian and investigate its spectral properties. We connect these concepts to dynamical systems theory via transfer operators, and illustrate the advantages of our method on benchmark graphs by comparison with existing methods. We show that the dynamic graph Laplacian allows for a clear interpretation of cluster structure evolution over time for directed and undirected graphs.
Abstract:The Koopman operator has entered and transformed many research areas over the last years. Although the underlying concept$\unicode{x2013}$representing highly nonlinear dynamical systems by infinite-dimensional linear operators$\unicode{x2013}$has been known for a long time, the availability of large data sets and efficient machine learning algorithms for estimating the Koopman operator from data make this framework extremely powerful and popular. Koopman operator theory allows us to gain insights into the characteristic global properties of a system without requiring detailed mathematical models. We will show how these methods can also be used to analyze complex networks and highlight relationships between Koopman operators and graph Laplacians.