Abstract:Causal discovery is becoming a key part in medical AI research. These methods can enhance healthcare by identifying causal links between biomarkers, demographics, treatments and outcomes. They can aid medical professionals in choosing more impactful treatments and strategies. In parallel, Large Language Models (LLMs) have shown great potential in identifying patterns and generating insights from text data. In this paper we investigate applying LLMs to the problem of determining the directionality of edges in causal discovery. Specifically, we test our approach on a deidentified set of Non Small Cell Lung Cancer(NSCLC) patients that have both electronic health record and genomic panel data. Graphs are validated using Bayesian Dirichlet estimators using tabular data. Our result shows that LLMs can accurately predict the directionality of edges in causal graphs, outperforming existing state-of-the-art methods. These findings suggests that LLMs can play a significant role in advancing causal discovery and help us better understand complex systems.
Abstract:This paper presents a real-time face recognition system using kinect sensor. The algorithm is implemented on GPU using opencl and significant speed improvements are observed. We use kinect depth image to increase the robustness and reduce computational cost of conventional LBP based face recognition. The main objective of this paper was to perform robust, high speed fusion based face recognition and tracking. The algorithm is mainly composed of three steps. First step is to detect all faces in the video using viola jones algorithm. The second step is online database generation using a tracking window on the face. A modified LBP feature vector is calculated using fusion information from depth and greyscale image on GPU. This feature vector is used to train a svm classifier. Third step involves recognition of multiple faces based on our modified feature vector.