Abstract:The process of diagnosing a disease from the 2D gel electrophoresis image is a challenging problem. This is due to technical difficulties of generating reproducible images with a normalized form and the effect of negative stain. In this paper, we will discuss a new concept of interpreting the 2D images and overcoming the aforementioned technical difficulties using mathematical transformation. The method makes use of 2D gel images of proteins in serums and we explain a way of representing the images into vectors in order to apply machine-learning methods, such as the support vector machine.