Abstract:Accurate vehicle detection is essential for the development of intelligent transportation systems, autonomous driving, and traffic monitoring. This paper presents a detailed analysis of YOLO11, the latest advancement in the YOLO series of deep learning models, focusing exclusively on vehicle detection tasks. Building upon the success of its predecessors, YOLO11 introduces architectural improvements designed to enhance detection speed, accuracy, and robustness in complex environments. Using a comprehensive dataset comprising multiple vehicle types-cars, trucks, buses, motorcycles, and bicycles we evaluate YOLO11's performance using metrics such as precision, recall, F1 score, and mean average precision (mAP). Our findings demonstrate that YOLO11 surpasses previous versions (YOLOv8 and YOLOv10) in detecting smaller and more occluded vehicles while maintaining a competitive inference time, making it well-suited for real-time applications. Comparative analysis shows significant improvements in the detection of complex vehicle geometries, further contributing to the development of efficient and scalable vehicle detection systems. This research highlights YOLO11's potential to enhance autonomous vehicle performance and traffic monitoring systems, offering insights for future developments in the field.
Abstract:Retinal fundus imaging plays an essential role in diagnosing various stages of diabetic retinopathy, where exudates are critical markers of early disease onset. Prompt detection of these exudates is pivotal for enabling optometrists to arrest or significantly decelerate the disease progression. This paper introduces a novel, lightweight convolutional neural network architecture tailored for automated exudate detection, designed to identify these markers efficiently and accurately. To address the challenge of limited training data, we have incorporated domain-specific data augmentations to enhance the model's generalizability. Furthermore, we applied a suite of regularization techniques within our custom architecture to boost diagnostic accuracy while optimizing computational efficiency. Remarkably, this streamlined model contains only 4.73 million parameters a reduction of nearly 60% compared to the standard ResNet-18 model, which has 11.69 million parameters. Despite its reduced complexity, our model achieves an impressive F1 score of 90%, demonstrating its efficacy in the early detection of diabetic retinopathy through fundus imaging.
Abstract:This survey investigates the transformative potential of various YOLO variants, from YOLOv1 to the state-of-the-art YOLOv10, in the context of agricultural advancements. The primary objective is to elucidate how these cutting-edge object detection models can re-energise and optimize diverse aspects of agriculture, ranging from crop monitoring to livestock management. It aims to achieve key objectives, including the identification of contemporary challenges in agriculture, a detailed assessment of YOLO's incremental advancements, and an exploration of its specific applications in agriculture. This is one of the first surveys to include the latest YOLOv10, offering a fresh perspective on its implications for precision farming and sustainable agricultural practices in the era of Artificial Intelligence and automation. Further, the survey undertakes a critical analysis of YOLO's performance, synthesizes existing research, and projects future trends. By scrutinizing the unique capabilities packed in YOLO variants and their real-world applications, this survey provides valuable insights into the evolving relationship between YOLO variants and agriculture. The findings contribute towards a nuanced understanding of the potential for precision farming and sustainable agricultural practices, marking a significant step forward in the integration of advanced object detection technologies within the agricultural sector.