Abstract:Methods from machine learning are being applied to design Industrial Control Systems resilient to cyber-attacks. Such methods focus on two major areas: the detection of intrusions at the network-level using the information acquired through network packets, and detection of anomalies at the physical process level using data that represents the physical behavior of the system. This survey focuses on four types of methods from machine learning in use for intrusion and anomaly detection, namely, supervised, semi-supervised, unsupervised, and reinforcement learning. Literature available in the public domain was carefully selected, analyzed, and placed in a 7-dimensional space for ease of comparison. The survey is targeted at researchers, students, and practitioners. Challenges associated in using the methods and research gaps are identified and recommendations are made to fill the gaps.
Abstract:Cyber-Physical Systems (CPS) have gained popularity due to the increased requirements on their uninterrupted connectivity and process automation. Due to their connectivity over the network including intranet and internet, dependence on sensitive data, heterogeneous nature, and large-scale deployment, they are highly vulnerable to cyber-attacks. Cyber-attacks are performed by creating anomalies in the normal operation of the systems with a goal either to disrupt the operation or destroy the system completely. The study proposed here focuses on detecting those anomalies which could be the cause of cyber-attacks. This is achieved by deriving the rules that govern the physical behavior of a process within a plant. These rules are called Invariants. We have proposed a Data-Centric approach (DaC) to generate such invariants. The entire study was conducted using the operational data of a functional smart power grid which is also a living lab.
Abstract:Adversarial learning is used to test the robustness of machine learning algorithms under attack and create attacks that deceive the anomaly detection methods in Industrial Control System (ICS). Given that security assessment of an ICS demands that an exhaustive set of possible attack patterns is studied, in this work, we propose an association rule mining-based attack generation technique. The technique has been implemented using data from a secure Water Treatment plant. The proposed technique was able to generate more than 300,000 attack patterns constituting a vast majority of new attack vectors which were not seen before. Automatically generated attacks improve our understanding of the potential attacks and enable the design of robust attack detection techniques.