Abstract:Abnormal behavior detection, action recognition, fight and violence detection in videos is an area that has attracted a lot of interest in recent years. In this work, we propose an architecture that combines a Bidirectional Gated Recurrent Unit (BiGRU) and a 2D Convolutional Neural Network (CNN) to detect violence in video sequences. A CNN is used to extract spatial characteristics from each frame, while the BiGRU extracts temporal and local motion characteristics using CNN extracted features from multiple frames. The proposed end-to-end deep learning network is tested in three public datasets with varying scene complexities. The proposed network achieves accuracies up to 98%. The obtained results are promising and show the performance of the proposed end-to-end approach.
Abstract:Violence and abnormal behavior detection research have known an increase of interest in recent years, due mainly to a rise in crimes in large cities worldwide. In this work, we propose a deep learning architecture for violence detection which combines both recurrent neural networks (RNNs) and 2-dimensional convolutional neural networks (2D CNN). In addition to video frames, we use optical flow computed using the captured sequences. CNN extracts spatial characteristics in each frame, while RNN extracts temporal characteristics. The use of optical flow allows to encode the movements in the scenes. The proposed approaches reach the same level as the state-of-the-art techniques and sometime surpass them. It was validated on 3 databases achieving good results.
Abstract:In recent years we have witnessed an increase in cyber threats and malicious software attacks on different platforms with important consequences to persons and businesses. It has become critical to find automated machine learning techniques to proactively defend against malware. Transformers, a category of attention-based deep learning techniques, have recently shown impressive results in solving different tasks mainly related to the field of Natural Language Processing (NLP). In this paper, we propose the use of a Transformers' architecture to automatically detect malicious software. We propose a model based on BERT (Bidirectional Encoder Representations from Transformers) which performs a static analysis on the source code of Android applications using preprocessed features to characterize existing malware and classify it into different representative malware categories. The obtained results are promising and show the high performance obtained by Transformer-based models for malicious software detection.
Abstract:Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.