Abstract:This paper presents an effective method for fingerprint classification using data mining approach. Initially, it generates a numeric code sequence for each fingerprint image based on the ridge flow patterns. Then for each class, a seed is selected by using a frequent itemsets generation technique. These seeds are subsequently used for clustering the fingerprint images. The proposed method was tested and evaluated in terms of several real-life datasets and a significant improvement in reducing the misclassification errors has been noticed in comparison to its other counterparts.
Abstract:This paper presents an effective fingerprint classification method designed based on a hierarchical agglomerative clustering technique. The performance of the technique was evaluated in terms of several real-life datasets and a significant improvement in reducing the misclassification error has been noticed. This paper also presents a query based faster fingerprint search method over the clustered fingerprint databases. The retrieval accuracy of the search method has been found effective in light of several real-life databases.