Abstract:In this work we propose a hybrid NN/HMM model for online Arabic handwriting recognition. The proposed system is based on Hidden Markov Models (HMMs) and Multi Layer Perceptron Neural Networks (MLPNNs). The input signal is segmented to continuous strokes called segments based on the Beta-Elliptical strategy by inspecting the extremum points of the curvilinear velocity profile. A neural network trained with segment level contextual information is used to extract class character probabilities. The output of this network is decoded by HMMs to provide character level recognition. In evaluations on the ADAB database, we achieved 96.4% character recognition accuracy that is statistically significantly important in comparison with character recognition accuracies obtained from state-of-the-art online Arabic systems.8
Abstract:In this paper, we propose an automatic analysis system for the Arabic handwriting postal addresses recognition, by using the beta elliptical model. Our system is divided into different steps: analysis, pre-processing and classification. The first operation is the filtering of image. In the second, we remove the border print, stamps and graphics. After locating the address on the envelope, the address segmentation allows the extraction of postal code and city name separately. The pre-processing system and the modeling approach are based on two basic steps. The first step is the extraction of the temporal order in the image of the handwritten trajectory. The second step is based on the use of Beta-Elliptical model for the representation of handwritten script. The recognition system is based on Graph-matching algorithm. Our modeling and recognition approaches were validated by using the postal code and city names extracted from the Tunisian postal envelopes data. The recognition rate obtained is about 98%.