Abstract:Detection of thunderstorms is important to the wind hazard community to better understand extreme winds field characteristics and associated wind induced load effects on structures. This paper contributes to this effort by proposing a new course of research that uses machine learning techniques, independent of wind statistics based parameters, to autonomously identify and separate thunderstorms from large databases containing high frequency sampled continuous wind speed measurements. In this context, the use of Shapelet transform is proposed to identify key individual attributes distinctive to extreme wind events based on similarity of shape of their time series. This novel shape based representation when combined with machine learning algorithms yields a practical event detection procedure with minimal domain expertise. In this paper, the shapelet transform along with Random Forest classifier is employed for the identification of thunderstorms from 1 year of data from 14 ultrasonic anemometers that are a part of an extensive in situ wind monitoring network in the Northern Mediterranean ports. A collective total of 235 non-stationary records associated with thunderstorms were identified using this method. The results lead to enhancing the pool of thunderstorm data for more comprehensive understanding of a wide variety of thunderstorms that have not been previously detected using conventional gust factor-based methods.
Abstract:With the wider availability of sensor technology, a number of Structural Health Monitoring (SHM) systems are deployed to monitor civil infrastructure. The continuous monitoring provides valuable information about the structure that can help in providing a decision support system for retrofits and other structural modifications. However, when the sensors are exposed to harsh environmental conditions, the data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors. Given a deluge of high-dimensional data collected continuously over time, research into using machine learning methods to detect anomalies are a topic of great interest to the SHM community. This paper contributes to this effort by proposing the use of a relatively new time series representation named Shapelet Transform in combination with a Random Forest classifier to autonomously identify anomalies in SHM data. The shapelet transform is a unique time series representation that is solely based on the shape of the time series data. In consideration of the individual characteristics unique to every anomaly, the application of this transform yields a new shape-based feature representation that can be combined with any standard machine learning algorithm to detect anomalous data with no manual intervention. For the present study, the anomaly detection framework consists of three steps: identifying unique shapes from anomalous data, using these shapes to transform the SHM data into a local-shape space and training machine learning algorithm on this transformed data to identify anomalies. The efficacy of this method is demonstrated by the identification of anomalies in acceleration data from a SHM system installed on a long-span bridge in China. The results show that multiple data anomalies in SHM data can be automatically detected with high accuracy using the proposed method.
Abstract:Autonomous detection of desired events from large databases using time series classification is becoming increasingly important in civil engineering as a result of continued long-term health monitoring of a large number of engineering structures encompassing buildings, bridges, towers, and offshore platforms. In this context, this paper proposes the application of a relatively new time series representation named "Shapelet transform", which is based on local similarity in the shape of the time series subsequences. In consideration of the individual attributes distinctive to time series signals in earthquake, wind and ocean engineering, the application of this transform yields a new shape-based feature representation. Combining this shape-based representation with a standard machine learning algorithm, a truly "white-box" machine learning model is proposed with understandable features and a transparent algorithm. This model automates event detection without the intervention of domain practitioners, yielding a practical event detection procedure. The efficacy of this proposed shapelet transform-based autonomous detection procedure is demonstrated by examples, to identify known and unknown earthquake events from continuously recorded ground-motion measurements, to detect pulses in the velocity time history of ground motions to distinguish between near-field and far-field ground motions, to identify thunderstorms from continuous wind speed measurements, to detect large-amplitude wind-induced vibrations from the bridge monitoring data, and to identify plunging breaking waves that have a significant impact on offshore structures.
Abstract:This paper introduces EQShapelets (EarthQuake Shapelets) a time-series shape-based approach embedded in machine learning to autonomously detect earthquakes. It promises to overcome the challenges in the field of seismology related to automated detection and cataloging of earthquakes. EQShapelets are amplitude and phase-independent, i.e., their detection sensitivity is irrespective of the magnitude of the earthquake and the time of occurrence. They are also robust to noise and other spurious signals. The detection capability of EQShapelets is tested on one week of continuous seismic data provided by the Northern California Seismic Network (NCSN) obtained from a station in central California near the Calaveras Fault. EQShapelets combined with a Random Forest classifier, detected all of the cataloged earthquakes and 281 uncataloged events with lower false detection rate thus offering a better performance than autocorrelation and FAST algorithms. The primary advantage of EQShapelets over competing methods is the interpretability and insight it offers. Shape-based approaches are intuitive, visually meaningful and offers immediate insight into the problem domain that goes beyond their use in accurate detection. EQShapelets, if implemented at a large scale, can significantly reduce catalog completeness magnitudes and can serve as an effective tool for near real-time earthquake monitoring and cataloging.