Abstract:Large Language Models (LLMs) have demonstrated remarkable potential in diverse domains, yet their application in the legal sector, particularly in low-resource contexts, remains limited. This study addresses the challenges of adapting LLMs to the Palestinian legal domain, where political instability, fragmented legal frameworks, and limited AI resources hinder effective machine-learning applications. We present a fine-tuned model based on a quantized version of Llama-3.2-1B-Instruct, trained on a synthetic data set derived from Palestinian legal texts. Using smaller-scale models and strategically generated question-answer pairs, we achieve a cost-effective, locally sustainable solution that provides accurate and contextually relevant legal guidance. Our experiments demonstrate promising performance on various query types, ranging from yes/no questions and narrative explanations to complex legal differentiations, while highlighting areas for improvement, such as handling calculation-based inquiries and structured list formatting. This work provides a pathway for the deployment of AI-driven legal assistance tools tailored to the needs of resource-constrained environments.