Abstract:Background: Clear language makes communication easier between any two parties. A layman may have difficulty communicating with a professional due to not understanding the specialized terms common to the domain. In healthcare, it is rare to find a layman knowledgeable in medical terminology which can lead to poor understanding of their condition and/or treatment. To bridge this gap, several professional vocabularies and ontologies have been created to map laymen medical terms to professional medical terms and vice versa. Objective: Many of the presented vocabularies are built manually or semi-automatically requiring large investments of time and human effort and consequently the slow growth of these vocabularies. In this paper, we present an automatic method to enrich laymen's vocabularies that has the benefit of being able to be applied to vocabularies in any domain. Methods: Our entirely automatic approach uses machine learning, specifically Global Vectors for Word Embeddings (GloVe), on a corpus collected from a social media healthcare platform to extend and enhance consumer health vocabularies (CHV). Our approach further improves the CHV by incorporating synonyms and hyponyms from the WordNet ontology. The basic GloVe and our novel algorithms incorporating WordNet were evaluated using two laymen datasets from the National Library of Medicine (NLM), Open-Access Consumer Health Vocabulary (OAC CHV) and MedlinePlus Healthcare Vocabulary. Results: The results show that GloVe was able to find new laymen terms with an F-score of 48.44%. Furthermore, our enhanced GloVe approach outperformed basic GloVe with an average F-score of 61%, a relative improvement of 25%. Furthermore, the enhanced GloVe showed a statistical significance over the two ground truth datasets with P<.001.
Abstract:Open-Access and Collaborative Consumer Health Vocabulary (OAC CHV, or CHV for short), is a collection of medical terms written in plain English. It provides a list of simple, easy, and clear terms that laymen prefer to use rather than an equivalent professional medical term. The National Library of Medicine (NLM) has integrated and mapped the CHV terms to their Unified Medical Language System (UMLS). These CHV terms mapped to 56000 professional concepts on the UMLS. We found that about 48% of these laymen's terms are still jargon and matched with the professional terms on the UMLS. In this paper, we present an enhanced word embedding technique that generates new CHV terms from a consumer-generated text. We downloaded our corpus from a healthcare social media and evaluated our new method based on iterative feedback to word embedding using ground truth built from the existing CHV terms. Our feedback algorithm outperformed unmodified GLoVe and new CHV terms have been detected.