Abstract:This paper presents an innovative framework for remote sensing image analysis by fusing deep learning techniques, specifically Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, with Geographic Information Systems (GIS). The primary objective is to enhance the accuracy and efficiency of spatial data analysis by overcoming challenges associated with high dimensionality, complex patterns, and temporal data processing. We implemented optimization algorithms, namely Particle Swarm Optimization (PSO) and Genetic Algorithms (GA), to fine-tune model parameters, resulting in improved performance metrics. Our findings reveal a significant increase in classification accuracy from 78% to 92% and a reduction in prediction error from 12% to 6% after optimization. Additionally, the temporal accuracy of the models improved from 75% to 88%, showcasing the frameworks capability to monitor dynamic changes effectively. The integration of GIS not only enriched the spatial analysis but also facilitated a deeper understanding of the relationships between geographical features. This research demonstrates that combining advanced deep learning methods with GIS and optimization strategies can significantly advance remote sensing applications, paving the way for future developments in environmental monitoring, urban planning, and resource management.
Abstract:This study explores the integration of Lidar, Synthetic Aperture Radar (SAR), and optical imagery through advanced artificial intelligence techniques for enhanced urban mapping. By fusing these diverse geospatial datasets, we aim to overcome the limitations associated with single-sensor data, achieving a more comprehensive representation of urban environments. The research employs Fully Convolutional Networks (FCNs) as the primary deep learning model for urban feature extraction, enabling precise pixel-wise classification of essential urban elements, including buildings, roads, and vegetation. To optimize the performance of the FCN model, we utilize Particle Swarm Optimization (PSO) for hyperparameter tuning, significantly enhancing model accuracy. Key findings indicate that the FCN-PSO model achieved a pixel accuracy of 92.3% and a mean Intersection over Union (IoU) of 87.6%, surpassing traditional single-sensor approaches. These results underscore the potential of fused geospatial data and AI-driven methodologies in urban mapping, providing valuable insights for urban planning and management. The implications of this research pave the way for future developments in real-time mapping and adaptive urban infrastructure planning.