Abstract:We introduce a new notion of stability--which we call stable list decoding--and demonstrate its applicability in designing differentially private density estimators. This definition is weaker than global stability [ABLMM22] and is related to the notions of replicability [ILPS22] and list replicability [CMY23]. We show that if a class of distributions is stable list decodable, then it can be learned privately in the agnostic setting. As the main application of our framework, we prove the first upper bound on the sample complexity of private density estimation for Gaussian Mixture Models in the agnostic setting, extending the realizable result of Afzali et al. [AAL24].
Abstract:We study the problem of estimating mixtures of Gaussians under the constraint of differential privacy (DP). Our main result is that $\tilde{O}(k^2 d^4 \log(1/\delta) / \alpha^2 \varepsilon)$ samples are sufficient to estimate a mixture of $k$ Gaussians up to total variation distance $\alpha$ while satisfying $(\varepsilon, \delta)$-DP. This is the first finite sample complexity upper bound for the problem that does not make any structural assumptions on the GMMs. To solve the problem, we devise a new framework which may be useful for other tasks. On a high level, we show that if a class of distributions (such as Gaussians) is (1) list decodable and (2) admits a "locally small'' cover [BKSW19] with respect to total variation distance, then the class of its mixtures is privately learnable. The proof circumvents a known barrier indicating that, unlike Gaussians, GMMs do not admit a locally small cover [AAL21].