Abstract:The Knapsack Problem is a classic problem in combinatorial optimisation. Solving these problems may be computationally expensive. Recent years have seen a growing interest in the use of deep learning methods to approximate the solutions to such problems. A core problem is how to enforce or encourage constraint satisfaction in predicted solutions. A promising approach for predicting solutions to constrained optimisation problems is the Lagrangian Dual Framework which builds on the method of Lagrangian Relaxation. In this paper we develop neural network models to approximate Knapsack Problem solutions using the Lagrangian Dual Framework while improving constraint satisfaction. We explore the problems of output interpretation and model selection within this context. Experimental results show strong constraint satisfaction with a minor reduction of optimality as compared to a baseline neural network which does not explicitly model the constraints.