Abstract:In the United States, hurricanes are the most devastating natural disasters causing billions of dollars worth of damage every year. More importantly, construction jobsites are classified among the most vulnerable environments to severe wind events. During hurricanes, unsecured and incomplete elements of construction sites, such as scaffoldings, plywoods, and metal rods, will become the potential wind-borne debris, causing cascading damages to the construction projects and the neighboring communities. Thus, it is no wonder that construction firms implement jobsite emergency plans to enforce preparedness responses before extreme weather events. However, relying on checklist-based emergency action plans to carry out a thorough hurricane preparedness is challenging in large-scale and complex site environments. For enabling systematic responses for hurricane preparedness, we have proposed a vision-based technique to identify and analyze the potential wind-borne debris in construction jobsites. Building on this, this paper demonstrates the fidelity of a new machine vision-based method to support construction site hurricane preparedness and further discuss its implications. The outcomes indicate that the convenience of visual data collection and the advantages of the machine vision-based frameworks enable rapid scene understanding and thus, provide critical heads up for practitioners to recognize and localize the potential wind-borne derbies in construction jobsites and effectively implement hurricane preparedness.
Abstract:Development of computational tools to analyze and assess the building capacities has had a major impact in civil engineering. The interaction with the structural software packages is becoming easier and the modeling tools are becoming smarter by automating the users role during their interaction with the software. One of the difficulties and the most time consuming steps involved in the structural modeling is defining the geometry of the structure to provide the analysis. This paper is dedicated to the development of a methodology to automate analysis of a hand sketched or computer generated truss frame drawn on a piece of paper. First, we focus on the segmentation methodologies for hand sketched truss components using the morphological image processing techniques, and then we provide a real time analysis of the truss. We visualize and augment the results on the input image to facilitate the public understanding of the truss geometry and internal forces. MATLAB is used as the programming language for the image processing purposes, and the truss is analyzed using Sap2000 API to integrate with MATLAB to provide a convenient structural analysis. This paper highlights the potential of the automation of the structural analysis using image processing to quickly assess the efficiency of structural systems. Further development of this framework is likely to revolutionize the way that structures are modeled and analyzed.